REXASI

Representative measure approach to assess decision trees reliability

¹ Eduardo Paluzo Hidalgo ^{1,2} Rocío González Díaz ¹

Víctor Toscano Durán 1 Javier Perera Lago

Machine learning algorithms are essential in modern data-informed artificial intelligence architecture. Representative datasets are crucial in guiding AI development. Proper training with these datasets reduces model complexity and power consumption while minimizing uncertainties. This poster employs the ε-representativeness measure based on computational topology proposed in [\[2\]](#page-0-0) to quantify the similarity between datasets and its impact on binary decision tree. Theoretical results confirm prediction similarities with *ε*-representativeness, and experiments show a significant correlation with feature importance rankings, demonstrating its efficacy for reliable decision trees.

¹University of Seville {vtoscano,jperera,rogodi}@us.es

²Universidad Loyola Andalucía epaluzo@{uloyola,us}.es

Objective

Binary decision trees

A binary decision tree is composed of nodes and branches.

- Node: Represents a decision based on a feature. A node can be internal, if it is connected to two children nodes, or terminal, if it doesn't have children, representing the endpoints of a branch in the tree. The decision at each node is based on a threshold value.
- **Branch:** Represent the various options or courses of action.

Figure 1. Binary decision tree example. A sample with $x = 0.2$ and $y = 0.1$ will be classify as 1.

The feature and splitting condition are chosen to minimize node impurity, a measure of class label homogeneity. The process iterates recursively until a desired depth or no improvement in impurity is possible. We used the Gini index. Let us denote by N_i the number of examples from X reaching the node $n_i.$ The number of class k examples reaching n_i will be denoted by $N_{i,k}.$ Then, let us use the following notation: $p_i=N_i/N,$ $p_{i,k}=N_{i,k}/N_i.$ The Gini index of n_i is $G(n_i)=\sum_{k=1}^cp_{i,k}(1-p_{i,k}).$ Assume that we fix an impurity measure and we denote it as $I.$ The information gain for an internal node n_i whose two children nodes are n_{i_1} and n_{i_2} is:

Let $T\in\mathcal{T}$ be a binary decision tree (DT), (X,λ_X) a dataset, and $(\tilde{X},\lambda_{\tilde{X}})$ a γ -balanced ε -representative dataset of (X,λ_X) . If $\varepsilon < M = \min_{i\in I}\mu_i$, then

Given a dataset (X,λ_X) and another dataset $(\tilde{X},\lambda_{\tilde{X}})$ with the cardinality of \tilde{X} smaller than the one of X , we say that $\tilde{x}\in \tilde{X}$ is an ε -representative of $x\in X$ if $||\tilde{x}-x||_\infty\leq \varepsilon$ and $\lambda_X(x)=\lambda_{\tilde{X}}(\tilde{x})$, and we say that $(\tilde{X},\lambda_{\tilde{X}})$ is an ε -representative dataset of (X,λ_X) if for all $x\in X$ there exists $\tilde{x}\in \tilde{X}$ that is an *ε*-representative of *x*.

Figure 2. Calculation example of the *ε*-representativeness of a reduced dataset in relation to a larger one. It involves finding the closest representative point (black) for each √ original point (blue) and computing the distance. The maximum of these minimum distances, illustrated in red in the graphic, gives the ε value, which is $\sqrt{5}$ in this example.

A dataset $(\tilde{X},\lambda_{\tilde{X}})$ that is representative of (X,λ_X) is said to be γ -balanced if each $\tilde{x}\in\tilde{X}$ is representative of exactly γ data examples of X and each $x \in X$ is represented by a single example $\tilde{x} \in \tilde{X}$.

$$
IG(n_i) = I(n_i) - \frac{N_{i_1}}{N_i}I(n_{i_1}) - \frac{N_{i_2}}{N_i}I(n_{i_2})
$$
\n(1)

Theorem 1

$$
Acc(T, (X, \lambda_X)) = Acc(T, (\tilde{X}, \lambda_{\tilde{X}}))
$$
\n(2)

Proof. Given $x=(x_1,\cdots,x_n)^T\in X$ and $\tilde x=(\tilde x_1,\cdots,\tilde x_n)^T\in \tilde X$ as an ε -representative of x , where $|\tilde x_j-x_j|\leq \varepsilon\,\forall j\in\{1,\cdots,d\},$ and assuming \tilde{x} accesses the tree through the root node n_1 and is sent to its left child, we find $0 < t_1 - \tilde{x}_{j_1}.$ By definition of margins, $\mu_1 \le t_1 - \tilde{x}_{j_1}.$ Since \tilde{x} is ε -representative of $x, x_{j_1} \le \tilde{x}_{j_1} + \varepsilon$. Adding these inequalities, $\mu_1 - \varepsilon \le t_1 - x_{j_1}$. Since $\varepsilon < M \le \mu_1$, then $0 < t_1 - x_{j_1}$, meaning x also goes left. Similarly, if \tilde{x} goes right, x does too. Following this reasoning, x and \tilde{x} reach the same terminal node n_ℓ and label $k_\ell.$ Due to γ -balance, each $\tilde{x} \in \tilde{X}$ of class k represents γ examples from X of class k . All reach the same node in T . Additionally, $N = \gamma \cdot \tilde{N}$, $N_j = \gamma \cdot \tilde{N}_j$, and $N_{j,k} = \gamma \cdot \tilde{N}_{j,k}.$ So, $p_j = \tilde{p}_j$ and $p_{j,k} = \tilde{p}_{j,k}.$ Hence:

Figure 3. Decision boundaries of binary decision trees (DTs) trained on full training synthetic set and two random subsets. From left to right: (1) the training set; (2) a subset with 40% of the training set and $\varepsilon = 0.756$; (3) a subset with 40% of the training set and $\varepsilon = 0.497$.

The experiment was repeated on 100 subsets of a real dataset. Spearman's correlation(SP) between *ε*-representativeness and the feature importance metric was calculated, yielding a significant correlation ($Sp=0.51$, p -value $= 5.2 \times 10^{-8}$).

$$
\text{Acc}(T, (X, \lambda_X)) = \sum_{j \in L} p_j \cdot p_{j,k_j} = \sum_{j \in L} \tilde{p}_j \cdot \tilde{p}_{j,k_j} = \text{Acc}(T, (\tilde{X}, \lambda_{\tilde{X}}))
$$
\n(3)

Acknowledgements

This work was supported in part by the European Union HORIZON-CL4-2021-HUMAN-01-01 under grant agreement 101070028 (REXASI-PRO) and by TED2021-129438B-I00 / AEI/10.13039/501100011033 / Unión Europea NextGenerationEU/PRTR.

*ε***-representativeness**

Feature importance ordering

Feature importance (*FI*) quantifies the impact of a particular feature $j \in \{1, \dots, d\}$ in decreasing the impurity of the decision tree. It is calculated $FI(j) =$ \sum *Ni* \cdot *IG*(n_i) (4)

as:

$$
FI(j) = \sum_{\substack{i \in I \\ j_i = j}} N_i \cdot IG(n_i)
$$

To compare the similarities between binary decision trees, the ordering of feature importance is evaluated using a metric from [\[1,](#page-0-1) Section 4.2]. The mean of the absolute differences in feature positions between two ordered sets is calculated:

$$
\text{Sim}(x, y) = \frac{1}{n} \sum_{i=1}^{n} | \text{pos}_x(f_i) - \text{pos}_y(|x_i|) |
$$

Results

References

[1] Barrera-Vicent, A., Paluzo-Hidalgo, E., Gutiérrez-Naranjo, M.A.: The metric-aware kernel-width choice for lime. In: Joint Proceedings of the xAI-2023 Late-breaking Work, Demos and Doctoral Consortium co-located with the 1st World Conference on eXplainable Artificial Intelligence (xAI-2023), Lisbon, Portugal, July 26-28, 2023. CEUR Workshop Proceedings, vol. 3554, pp. 117–122 (2023) [2] Gonzalez-Diaz, R., Gutiérrez-Naranjo, M.A., Paluzo-Hidalgo, E.: Topology-based representative datasets to reduce neural network training resources. Neural Computing and Applications (2022) [3] Perera-Lago, J., Toscano-Durán, V., Paluzo-Hidalgo, E., Narteni, S., Rucco, M.: Application of the representative measure approach to assess the reliability of decision trees in dealing with unseen vehicle collision data (2024)

 (f_i) (5)

4 *th* Centre for Topological Data Analysis conference, 7-9 August 2024, Mathematical Institute, Oxford