Binary	decision	
0000	0000	

ε-representativeness 00000 Experiments 0000000 Conclusion 0000

Application of the representative measure approach to assess the reliability of decision trees in dealing with unseen vehicle collision data

Víctor Toscano Durán

vtoscano@us.es

Applied Mathematics I Department, University of Seville Seville, Spain

July 18, 2024

Binary decision trees	ε -representativeness	Experiments	Conclusion
0000000	00000	0000000	0000

Application of the representative measure approach to assess the reliability of decision trees in dealing with unseen vehicle collision data

Joint work with: Javier Perera Lago, Eduardo Paluzo Hidalgo, Sara Narteni and Matteo Rucco.

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	0000

Take home message

- The importance of representative datasets in ML
- \blacksquare Assessing dataset similarity using $\varepsilon\textsc{-representativeness}$ method for binary decision trees
- \blacksquare Significant correlation between $\varepsilon\textsc{-representativeness}$ and feature importance ordering

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	0000

Outline

- Introduction to binary decision trees
- 2 ε -representativeness
- 3 Theorem 1
- 4 Experiments
- 5 Conclusion and future work

Binary decision trees	ε -representativeness	Experiments	Conclusion
●000000	00000	0000000	0000

Binary decision trees

Binary decision trees	ε -representativeness	Experiments	Conclusion
○●○○○○○	00000	0000000	0000

Composition

A binary decision tree (DT) is a rooted tree representing a partition of the feature space and is composed of nodes and branches.

Binary decision trees 00●0000	ε -representativeness 00000	Experiments 0000000	Conclusion 0000

XGBoost

XGBoost is an ensemble of decision trees, i.e., it combines the predictions of several binary DTs that are sequentially built, each correcting errors of the previous one. Samples that are incorrectly predicted have a higher weight in the following trees.

Figure: XGBoost process

Binary decision trees	ε -representativeness	Experiments	Conclusion
000●000	00000	0000000	0000

Feature and Splitting condition

- I The feature and splitting condition are chosen to minimize node impurity.
- Node impurity measures class label homogeneity: maximum when labels are even, minimum (pure nodes) when all labels are identical.
- Information Gain measures how much the impurity is reduced due to the split.

Binary decision trees	ε -representativeness	Experiments	Conclusion
0000●00	00000	0000000	0000

Feature importance ordering

Feature importance (*FI*) quantifies the impact of a particular feature $j \in \{1, \dots, d\}$ in decreasing the impurity of the decision tree. It is calculated as:

$$FI(j) = \sum_{\substack{i \in I \\ j_i = j}} N_i \cdot IG(n_i)$$
(1)

where N_i is the number of examples from data reaching the node n_i and $IG(n_i)$ is the information gain of node i .

Binary decision trees	ε -representativeness	Experiments	Conclusion
00000€0	00000	0000000	0000

Feature importance ordering

To compare the similarities between binary decision trees, the ordering of feature importance is evaluated using a metric proposed in [1]. The mean of the absolute differences in feature positions between two ordered sets is calculated:

$$\operatorname{Sim}(x, y) = \frac{1}{n} \sum_{i=1}^{n} \left| \operatorname{pos}_{x}(f_{i}) - \operatorname{pos}_{y}(f_{i}) \right|$$
(2)

[1] "Barrera-Vicent, A., Paluzo-Hidalgo, E., Gutiérrez-Naranjo, M.A.: The metric-aware kernel-width choice for LIME"

Binary decision trees	ε -representativeness	Experiments	Conclusion
000000●	00000	0000000	0000

Feature importance ordering

Suppose we have three subsets of features ordered based on their importance:

- × = [1,2,3,4]
- y = [1,2,4,3]
- ∎ z = [3,1,2,4]

Then Sim(x, y) = 0.5, Sim(x, z) = 1 and Sim(y, z) = 1.5.

The lower the value of this metric, the greater the similarity between the importance vectors.

Binary decision trees	<i>ε</i> -representativeness	Experiments	Conclusion
	●0000	0000000	0000

ε -representativeness

Binary decision trees	ε -representativeness O \odot OOO	Experiments 0000000	Conclusion 0000

Introducing ε -representativeness

Definition. Given a dataset (X, λ_X) and another dataset $(\tilde{X}, \lambda_{\tilde{X}})$ with the cardinality of \tilde{X} smaller than the one of X, we say that $\tilde{x} \in \tilde{X}$ is an ε -representative of $x \in X$ if $||\tilde{x} - x||_{\infty} \leq \varepsilon$ and $\lambda_X(x) = \lambda_{\tilde{X}}(\tilde{x})$, and we say that $(\tilde{X}, \lambda_{\tilde{X}})$ is an ε -representative dataset of (X, λ_X) if for all $x \in X$ there exists $\tilde{x} \in \tilde{X}$ that is an ε -representative of x.[2]

[2] "Gonzalez-Diaz, R., Gutiérrez-Naranjo, M.A., Paluzo-Hidalgo, E.: Topology-based representative datasets to reduce neural network training resources"

Binary decision trees	ε-representativeness	Experiments	Conclusion
	00●00	0000000	0000

Illustrative example of ε -representativeness calculation

Figure: Calculation example of the ε -representativeness of a reduced dataset in relation to a larger one. It involves finding the closest representative point (black) for each original point (blue) and computing the distance. The maximum of these minimum distances, illustrated in red in the graphic, gives the ε value, which is $\sqrt{5}$ in this example.

Binary decision trees	<i>ε</i> -representativeness	Experiments	Conclusion
	000●0	0000000	0000

γ -balanced

A dataset $(\tilde{X}, \lambda_{\tilde{X}})$ that is representative of (X, λ_X) is said to be γ -balanced if each $\tilde{x} \in \tilde{X}$ is representative of exactly γ data examples of X and each $x \in X$ is represented by a single example $\tilde{x} \in \tilde{X}$.

Binary decision trees	<i>ε</i> -representativeness	Experiments	Conclusion
	0000●	0000000	0000

Theorem 1

Let $T \in \mathcal{T}$ be a binary decision tree (DT), (X, λ_X) a dataset, and $(\tilde{X}, \lambda_{\tilde{X}})$ a γ -balanced ε -representative dataset of (X, λ_X) . If $\varepsilon < M = \min_{i \in I} \mu_i$, then

$$\operatorname{Acc}(T, (X, \lambda_X)) = \operatorname{Acc}(T, (\tilde{X}, \lambda_{\tilde{X}}))$$
(3)

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	•000000	0000

Experiments

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	000000	0000

Introduction

- The code for the experiments is available in a GitHub repository ¹.
- Firstly, a 2D synthetic dataset was used as an illustration and then we extend to vehicle platooning dataset.

REXASI

¹https://github.com/Cimagroup/Application_Representative_Measure_Reliability_DT

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	0000

2D Synthetic dataset

The dataset comprises 200 data distributed in two noisy concentric circles representing distinct classes as shown in next Figure.

Figure: Full synthetic dataset generated using Scikit-learn and the two random subsets. From left to right: (1) the training set; (2) a subset composed of a 40% of the training set and $\varepsilon = 0.756$; (3) a subset composed of 40% of the training set and $\varepsilon = 0.497$. We can also see the decision boundaries of the binary DTs trained using each set of data.

19 /

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	0000

2D Synthetic dataset

The accuracy values for the binary DTs on the test set were: 0.84 for the train dataset, 0.94 for Subset 1, and 0.82 for Subset 2.

Table: Feature importance percentage for the training set, and subset 2. We can see that the most important feature for the training set and Subset 2 is the same.

Data	<i>x</i> ₁	<i>x</i> ₂	ε
Training set	40.4	59.6	-
Subset 1	50.37	49.62	0.756
Subset 2	18.4	81.6	0.497

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	0000

Vehicle Platooning dataset

This dataset consists of predicting whether a platoon of vehicles will collide based on features such as the number of cars or their speed. It is composed of 107,210 data with 23 numerical features.

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	0000

Vehicle Platooning dataset

- ε-representativeness
 - Subset 1: 0.539
 - Subset 2: 0.655
- Better feature importance similarity with lower ε
 - Subset 1: 1.74
 - Subset 2: 1.83
- Significant correlation between ε and feature importance similarity. Sp = 0.51, *p*-value= 5.2×10^{-8}

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	000000●	0000

Vehicle Platooning dataset, extension to XGBoost

- ε-representativeness
 - Subset 1: 0.539
 - Subset 2: 0.655
- Better feature importance similarity with lower ε
 - Subset 1: 0.696
 - Subset 2: 1.823
- Significant correlation between ε and feature importance similarity. Sp = 0.673, p-value= 1.79×10^{-14}

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	●000

Conclusion

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	O●OO

Conclusion

- Proved that similar accuracy is obtained under certain conditions of representativeness with binary decision trees (Theorem 1).
- Experiments shows significant correlation between feature importance ordering and ε-representativeness. According to our results, representative sets produce similar explanations of the dataset.

Binary decision trees	ε -representativeness	Experiments	Conclusion
	00000	0000000	00●0

Future work

- Aim to provide theoretical guarantees regarding the ordering of feature importance.
- Plan distance-based comparison between the decision rules of binary decision trees.

Binary decision trees	ε -representativeness 00000	Experiments 0000000	Conclusion 000●

Acknowledgement

- Maurizio Mongelli and Miguel A. Gutierrez-Naranjo for the insightful discussions and ideas.
- European Union HORIZON-CL4-2021-HUMAN-01-01 under grant agreement 101070028 (REXASI-PRO).
- TED2021-129438B-I00/ AEI/10.13039/501100011033 / Unión Europea NextGenerationEU/PRTR.

Thanks for your time! :)

